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Cutoff Frequencies of Transmission
Lines Consisting of Pair of Cylinders

B. N. Das, S. B. Chakrabarty, and S. Das

Abstract— The paper presents a method of evaluation of cutoff fre-
quencies of higher-order modes of transmission line of parallel cylinders
by transforming them into a parallel plate configuration using cotangent
hyperbolic transformation. Application of the method of finite difference
to the weighted Helmholtz equation leads to a set of simultaneous
equations. The eigenvalues related to cutoff frequencies are determined
from the characteristic equation expressed in terms of matrices obtained
from the simultaneous equations. Numerical data are presented.

L INTRODUCTION

In the evaluation of cutoff frequencies of higher-order modes of
transmission lines consisting of parallel cylinders, bilinear trans-
formation in terms of mutually inverse points was used [1]. But
this was not combined with any powerful numerical method [2]
for accurate evaluation of higher-order mode cutoff frequencies.
Use of this transformation which transforms parallel cylinders into
coaxial configuration has the limitation that, it is difficult to visualise
the additional boundary conditions which reveal the characteristics
of symmetric and asymmetric higher-order modes resulting from
the displacement of the axis of the inner cylinder [3]. Kuttler’s
transformation [4] which transforms the conductor boundaries to
parallel plates is free from this limitation.

In this paper, the weighted Helmholtz equation resulting from Kut-
tler’s transformation is solved by the method of finite difference. The
entire region between the transformed parallel plates is divided into
rectangular grid for the application of the method of finite difference.
The numerical data on cutoff frequencies of eccentric coaxial line
evaluated by this method has shown excellently good agreement with
those reported in the literature [4]. The same technique is therefore
employed for evaluation of cutoff frequencies of transmission lines
consisting of parallel cylinders of unequal radii.

II. ANALYSIS

Application of cotangent hyperbolic transformation transforms
the structure of Fig. ! to the configuration shown in Fig. 2. The
transformed parallel plates intersect the real axes of the transformed
complex plane on its positive and negative sides (Fig. 2).

The expressions for x; and x2, the points of intersection of the
parallel plates with the real axes are of the form
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Fig. 1. w-plane representation of parallel wire line.
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Fig. 2. z-plane representation of the structure of Fig. 1 obtained through

conformal transformation.
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The weighted Helmholtz equation resulting from the conformal

transformation is obtained as [4], [5]
Py Y 5o sinh(21) 2
EZ_+ W+L Rl{cosh(x)—cos(y)} v=0. )

Since this equation can not be solved by the method of separation
of variables, the dimensionless parameter kR, is obtained from the
solution of simultaneous equations resulting from the application of
the method of finite difference. The entire region of Fig. 2 is divided
into rectangular grid as shown in Fig. 3. If A7 and V are the number
of nodes along the r and y directions respectively, the separation
between the nodes in the two directions are o, = (x1 + «2)/M and
R, = 2a/N.

At the nodes of Fig. 3, the unknown function ¢ are represented by
Yn—1ynr+¢ where 1 <9 < NV and 1 < ¢ < M. Hence, fory = —7
and 7 the potential functions are represented by #¥.---.¢'5s and
Y(N_1)M+1,° "> ¥Nas along the z-axis.

In view of singularity at + = 0 and y = 0, (1) is multiplied by
(cosh z—cos y). Following the procedure suggested in the literature
[6] the difference equation reduces to the form

—1
rs = cosh

(—tmrrsehy ~ Viq—ayarrehs — Viin_1ynaess by
— P(u—vyarre—1hy)(cosh(z,) — cos(ye))
+ [(2hz + 2h§)(c0sh(w5) — cos(yy))
~ K*R2 RS RY sinh® a1 [y _1yprqe = 0 2
where x¢ = —x1 + (£ — 1)he and y, = -7 + (7 — L)hy
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y TABLE I
TE FREQUENCIES k; FOR ECCENTRIC ANNULAR GUIDE
L] . L] L] L ] L
j | Symm & ~ 0.15875, g; =0.379
CYERp--p—=p-=d~—mpm pomn . ~etry | Present Method of ref.[4]
: 'I : : } method | Lower bound Upper bound
L e e e e - - —
: i S it S 2| a | 17404 | 17330 1.7584
! ,
. __:___:_‘ff\M*'_!_ I S R 3| s | 17696 | 17603 1.7948
{
! X : 4| a | 29201 2.873 2.989
| | X
. ~—y, m——— LT T WH e
Ver-oma|” " Ven Tovie " N 5 50 s | 29292 2.871 3.004
Lo (ot IMes, _ 6| & |3736 | 3432 3.775
Y s — - —_—— e = =l = el — - — .
| ! ¥ qu )M+I! : 7] s | 3.8014 3.78 417
t
. ,..__.'_._i‘_..ii__'L_.J‘_—_ . 8| a | 4.1993 3.76 4.21
je-hy— : i | 1 | -y -
y=-1r Y S _._!.._._.J‘-_.._L__J
P " v A { TABLE 1Tl
hy 1 2 3 M-1 VM hy TM FREQUENCIES k; FOR PARALLEL LINE, Ry /Ry = 0.7
j_ X=-Xq X3 Xo _L
s s i |Symm-|2=25|2=40|2=60|2=80|2=100
‘Fig. 3. Geometry of the grid nodes in the transformed structure of Fig. 2. X
etry
TABLE I 1 (s 0.0408 | 0.0203 | 0.0109 | 0.0089 0.0054
TM FREQUENCIES k; FOR ECCENTRIC ANNULAR GUIDE 2 |a 0.0755 |0.0459 |0.0352 | 0.0296 0.0123
j | Symm & =025, 2 =05 3 |s 0.1583 | 0.0783 |0.0455 | 0.0330 0.0302
-etry | Present Method of ref.[4] 4 |a 0.2273 | 0.0861 | 0.0672 | 0.0528 0.0401
method | Lower bound Upper bound 5 |s 0.2879 |0.1327 |0.0811 |0.0781 0.0633
1 s 2.9811 2.887 2.996 6 |a 0.3994 0.1747 0.1145 0.0817 0.0737
9 a 3.9945 3.858 4.043 7 |s 0.4346 | 0.1832 | 0.1206 | 0.0941 0.0831
3 s 47872 4.088 4.827 8 |a 0.4741 0.2273 0.1393 0.1264 0.1121
4 a 5.5064 458 5.575 9 |s 0.6064 10.2335 |0.1626 | 0.1295 0.1292
5 s 5.7897 5.877 10| a 0.6771 10.2842 |0.1949 | 0.1358 0.1223
6 a 6.2513 6.323
7 . 6.9381 6.999 j | Symm-| 2=25|Z2=40|£=60|F=80|F=100
t
8| a | 7.2544 7.208 4
9 7.5896 7.735 1 Js 0.0408 | 0.0203 | 0.0109 |} 0.0089 0.0054
s . .
2 ja 0.0755 0.0459 0.0352 0.0296 0.0123
10 a 7.9918 8.166
3 |s 0.1583 0.0783 0.0455 0.0330 0.0302
4 |a 0.2273 ] 0.0861 | 0.0672 | 0.0528 0.0401
Equation (2) gives a set of simultaneous equations as n and £ 5 | s 0.2879 |0.1327 |o00811 | 00781 0.0633
assumes values over the range 1 < n < Nand 1 < £ < M as
stated above. The values of M and N are so chosen that ¢ and 6 ja 03994 101747 | 0.1145 | 0.0817 0.0787
2y, never assumes values equal to zero simultaneously. This set of 7 1s 0.4346 | 0.1832 |0.1206 | 0.0941 0.0831
simultaneous equations leads to a matrix equation of the form
2222 8 la 0.4741 0.2273 0.1393 0.1264 0.1321
Al — k°RiR R, [B))[¢] = [0 3
(141 thhy B[] = 0] @ 9 |s 0.6064 |0.2335 |0.1626 |0.1295 0.1292
where [A]‘ is a square matrix whczse diagonal elements are 2(h2+1%) 10]a 06771 | 02842 |0.1949 |0.1358 0.1223
and nondiagonal elements are 0's, —h; and —h, as dictated by (2)

and the boundary conditions. [B] is a diagonal matrix whose diagonal
elements are sinh” 1, [4] is a column matrix and [0] is a null column o )
matrix. Representing the eigenvalue of (3) as A = k2R3h2h2 the The eigenvalues A are found from the characteristic equation

matrix equation assumes the form

([A] = AIBDIY] = [0]. “ det([4] — \[B]) = 0. )
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TABLE IV
TE FREQUENCIES k, FOR PARALLEL LINE, Ra/ Ry = 0.7
j |Symm-| 2 =25£2<40/£=60|2=80|L=100
etry
2 Ja 0.0833 | 0.0495 |0.0348 | 0.0222 0.0215
3 |s 0.2121 |0.1025 [ 0.0738 | 0.0459 0.0343
4 |a 0.2722 | 0.1623 | 0.0645 | 0.0681 0.0492
5 |s 0.3612 | 0.1682 |0.1102 | 0.0753 0.0711
6 |a 0.4321 10.2593 |0.1362 {0.1191 0.0923
7 s 0.4853 0.2685 0.1483 0.1202 0.1017
8 |a 0.5242 | 0.3244 | 0.1948 | 0.1301 0.1239
9 |s 0.7352 | 0.3450 | 0.2111 | 0.1584 0.1321
10]a 0.8112 | 0.4594 |[0.2242 |0.2298 0.1933

The characteristic feature of the higher-order modes in parallel wire
line is that they split into symmetric and asymmetric modes [3].
The boundary conditions satisfied by the different modes are [7]

oy ..
—— =0 (Neumann condition)
on

The symmetric and asymmetric modes are obtained from either of
the above boundary conditions [4] along y = %7

Satisfying the boundary conditions and applying the finite differ-
ence representation of the weighted Helmholtz equation at each node
of Fig. 3. a set of simultaneous equations are obtained. From the
above set of simultaneous equations, the matrix equation of the form
([A] — £[B])[¥] = [0] is obtained. Use of this matrix equation and
(5) leads to the desired eigenvalues.

' =0 (Dirichlet condition),

IMI. NUMERICAL RESULTS AND DISCUSSION

For checking the validity of the method, the numerical data on
cutoff frequencies are first evaluated for the structure in which the
smaller cylinder is completely enclosed by the larger one. The points
of intersection of the transformed parallel lines =] and % are on the
positive side of the real axis of Fig. 2 and their expressions available
in the literature [8] are used for the computation. The difference
equation in this case is of the same form as (2) with the modification
that «; is replaced by 2} and h, is replaced by k), = (x3 — «1)/M
and hj, = h, = 27 /N. The numerical data on cutoff frequencies of
higher-order TE and TM modes of eccentric coaxial line is presented
in Tables I and II for Rz/ Ry = 0.25.0.158 75, D/R; = 0.5,0.379.
Since, the data computed by this method lie between the upper and
lower bounds of those data evaluated by Kuttler [4] using the method
of intermediate problems. the validity of the analysic is established.
The accuracy of Kuttler's data has also been verified by Zhang et
al. [9]. The agreement of the numerical data of Tables I and II gave
confidence in the use of the present technique for evaluating cutoff
frequencies of structure of Fig. 1.

The numerijcal data on cutoff frequencies of higher-order modes of
the structure of Fig. 1 presented in Tables III and IV are evaluated
using (3)—~(5) and the appropriate boundary conditions for symmetric
and asymmetric modes for B2 /R = 0.7 and D/R; varying from
2.5 to 10. The accuracy of the results in Tables III and IV is inferred
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from use of the same CVLRG routine of IMSL available in cyber
main frame for the data of Tables I and II.
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Schottky Diodes for Analogue
Phase Shifters in GaAs MMIC’s

P. R. Shepherd and M. J. Cryan

Abstract— A simple Schottky diode structure, which is easily imple-
mented in a foundry gallium arsenide (GaAs) process, is described. This
structure occupies very much less area than the usual technique of
realising Schottky diodes, using standard FET structures. Two variations
of the diode have been characterized and modeled using a standard
equivalent circuit. This has been used to design a simple analogue
phase shifter based on a loaded-line configuration. The phase shifter was
manufactured using a standard foundry process and has shown excellent
results in terms of phase shift linearity with tuning voltage, combined
with low insertion loss, over the range 2-8 GHz.

1. INTRODUCTION

Electronically controllable phase shifters have a number of uses,
most particularly in the realization of beam-forming circuits for
phased artay antennas [1]. In recent years, with the growth of GaAs
monolithic microwave integrated circuits (MMIC’s), techniques have
been developed for realising beam-forming circuits in MMIC form
to take advantage of their low power/size/weight, particularly for
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