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Short Papers

Cutoff Frequencies of Transmission
Lines Consisting of Pair of Cylinders

B. N. Das, S. B. Chakrabarty, and S. Das

Abstract— The paper presents a method of evaluation of cutoff fre-
quencies of higher-order modes of transmission line of parallel cylinders
by transforming them into a parallel plate configuration using cotangent
hyperbolic transformation. Application of the method of finite difference
to the weighted Helmholtz equation leads to a set of simultaneous
equations. The eigenvalues related to cutoff frequencies are determined
from the characteristic equation expressed in terms of matrices obtained
from the simultaneous eqnations. Numerical data are presented.

I. INTRODUCTION

In the evaluation of cutoff frequencies of higher-order modes of

transmission lines consisting of parallel cylinders, bilinear trans-

formation in terms of mutually inverse points was used [1]. But

this was not combined with any powerful numerical method [2]

for accurate evaluation of higher-order mode cutoff frequencies.
Use of this transformation which transforms parallel cylinders into
coaxial configuration has the limitation that, it is difficult to visualise
the additional boundary conditions which reveal the characteristics

of symmetric and asymmetric higher-order modes resulting from
the displacement of the axis of the inner cylinder [3]. Kuttler’s
transformation [4] which transforms the conductor boundaries to
parallel plates is free from this limitation.

In this paper, the weighted Hehnholtz equation resulting from Kut-
tier’s transformation is solved by the method of finite difference. The
entire region between the transformed parallel plates is divided into
rectangular grid for the application of the method of finite difference.
The numerical data on cutoff frequencies of eccentric coaxial line
evahtated by this method has shown excellently good agreement with
those reported in the literature [4]. The same technique is therefore
employed for evaluation of cutoff frequencies of transmission lines
consisting of parallel cylinders of unequal radii.

II. ANALYSIS

Application of cotangent hyperbolic transformation transforms

the structure of Fig. 1 to the configuration shown in Fig. 2. The

transformed parallel plates intersect the real axes of the transformed

complex plane on its positive and negative sides (Fig. 2).

The expressions for xl and xz, the points of intersection of the

parallel plates with the real axes are of the form

~1 G cosh–l 1- (%)2+(%)2,
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Fig. 1. w-plane representation of parallel wire line.
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Fig. 2. c -plane representation of the structure of Fig. 1 obtained through
conformal transformation.
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The weighted Helmholtz equation resulting from the conforrnal
transformation is obtained as [4], [5]
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cosh(~’) – COS(g)

Since this equation can not be solved by the method of separation

of variables, the dimensionless parameter kRl is obtained from the

solution of simultaneous equations resulting from the application of
the method of finite difference. The entire region of Fig. 2 is divided
into rectangular grid as shown in Fig. 3. If M and N are the number
of nodes along the r and y directions respectively, the separation
between the nodes in the two directions are h x = (z, +X2) /Af and
h; = 27i/A”.

At the nodes of Fig. 3, the unknown function + are represented by

4’(T-I)M+$ where 1< q < I“ and 1< & < ~~~. Hence, for u = –m
and m the potential functions are represented by rj,l, . . . . ~M and

4(.V–l)M+l, ““ “ , @,vAI along the ~-axis.
In view of singularity at .r = O and y = O, (1) is multiplied by

(cosh z – cos y). Following the procedure suggested in the literature
[6] the difference equation reduces to the form

where Xc = –ZI + (& l)h. and YV= –~+ (q– l)h~

(2)
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TE FREQUENCIESk ~ FOR ECCENTRICANNULARGUIDE

=

j

.
2

3

4

5

6

‘i’

8

Syrnm ~ = 0.15875, ~ = 0.379

-etry Present Method of ref. [4]

method Lower ‘bound Upper bound

a 1.7404 1.7330 1.7584

s 1.7696 1.7603 1.7948

a 2.9201 2.873 2.989

s 2.9292 2.871 3.004

a 3.7386 3.432 3.775

s 3.8014 3.78 4.17

a 4.1993 3.76 4.21
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Fig. 3. Geometry of the grid nodes in the transformed structure of Fig. 2.
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Method of ref. [4]
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Equation (2) gives a set of simultaneous equations as ~ and &
assumes values over the range 1 < v < N and 1 < ~ < M as

stated above. The values of M and N are so chosen that x$ and

Xq newt’ assumes values equal to zero simultaneously. This set of
simultaneous equations leads to a matrix equation of the form

([A] - k2R;h;h;[B])[@] = [0] (3)

where [A] is a square matrix whose diagonal elements are 2 (h;+ h; )

and nondiagonal elements are O’s, – h: and – h~ as tilctwed by (Z)
and the boundary conditions. [B] is a diagonal matrix whose diagonal
elements are sinhz xl, [@]is a column matrix and [0] is a null column
matrix. Representing the eigenvalue of (3) as A = kz R? k: h; the

matrix equation assumes the form

([A] - A[B])[@] = [0]. (4)

The eigenvalues J are found from the characteristic equation

clet([A] – A[B])= O. (5)



2112 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44. NO. 11, NOVEMBER 1996

.
j

—
2

3

4

5

6

7

8

9

10
.

TABLE IV
TE FREQUENCIES ,kJFOR PARALLEL LINE,R2 /RI = 0.7
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0.0492

0.0711
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0.1239
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The characteristic feature of the higher-order modes in parallel wire
line is that they split into symmetric and asymmetric modes [3].

The boundary conditions satisfied by the different modes are [7]

~ = O (Dirichlet condition), ~ = O (Neumann condition)

The symmetric and asymmetric modes are obtained from either of
the above boundary conditions [4] along y = +~.

Satisfying the boundary conditions and applying the finite differ-

ence representation of the weighted Hehnhohz equation at each node

of Fig. 3. a set of simultaneous equations are obtained. From the
above set of simultaneous equations, the matrix equation of the form
([A] – ([l?]) [~] = [0] is obtained. Use of this matrix equation and

(5) leads to the desired eigenvahtes.

III. NUMERICAL RESULTS AND DISCUSSION

For checking the validity of the method, the numerical data on

cutoff frequencies are first evaluated for the structure in which the

smaller cylinder is completely enclosed by the larger one. The points

of intersection of the transformed parallel lines zj and .r~ are on the

positive side of the real axis of Fig. 2 and their expressions available

in the literature [8] are used for the computation. The difference

equation in this case is of the same form as (2) with the modification

that $1 is replaced by Z! and kr is replaced by hj = (.c2 – .cI )/.kf

and hj = h ~ = 2z/N. The numerical data on cutoff frequencies of
higher-order TE and TM modes of eccentric coaxial line is presented
in Tables I and II for R2/Rl = 0.25,0.15875, D/Rl = 0.5,0.379.

Since, the data computed by this method lie between the upper and
lower bounds of those data evaluated by Kuttler [4] using the method
of intermediate problems. the validity of the analysis is established.
The accuracy of Kuttler’s data has also been verified by Zhang et
al. [9]. The agreement of the numerical data of Tables I and II gave
confidence in the use of the present technique for evaluating cutoff
frequencies of structure of Fig. 1.

The numerical data on cutoff frequencies of higher-order modes of
the structure of Fig. 1 presented in Tables 111and IV are evaluated
using (3)–(5) and the appropriate boundary conditions for symmetric
and asymmetric modes for R2 /RI = 0.7 and D/Rl varying from
2.5 to 10. The accuracy of the results in Tables III and IV is inferred

from use of the same CVLRG routine of IMSL available in cyber
main frame for the data of Tables I and II.
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Schottky Diodes for Analogue
Phase Shifters in GaAs MMIC’S

P. R. Shepherd and M. J. Cryan

Abstract— A simple Schottky diode structure, which is easily imple-
mented in a foundry gallium arsenide (GaAs) process, is described. This
structure occupies very much less area than the usnal technique of
reafising Schottky diodes, using standard FET structures. ‘IWOvariations
of the diode have been characterized and modeled using a standard
equivalent circuit. Thk has been used to design a simple analogne
phase shifter based on a loaded-line configuration. The phase shifter was
manufactured using a standard foundry process and has shown excellent
results in terms of phase shift linearity with tuning voltage, combined
with low insertion loss, over the range 2-8 GHz.

I. INTRODUCTION

Electronically controllable phase shifters have a number of uses,
most particularly in the realization of beam-forming circuits for
phased array antennas [1]. In recent years, with the growth of GRAS
monolithic microwave integrated circuits (MMIC’ s), techniques have
been developed for realising beam-forming circuits in MMIC form
to take advantage of their low powerlsizelweight, particularly for
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